skip to main content


Search for: All records

Creators/Authors contains: "Lédeczi, Ákos"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Robots are a popular and engaging educational tool for teaching computational thinking, but they often have significant costs and limitations for classroom use. Switching to a simulated environment can eliminate many of these difficulties. By also providing students with a block-based programming environment, the barrier to entry can be further reduced. This paper presents a networked virtual robotics platform designed to create an environment which is highly accessible for novice students and their teachers alike, along with components of a curriculum designed to teach computational thinking skills through robotics programming challenges, including autonomous challenges and in-class competitions. Students access this platform through an extension of the same web interface used for programming their robots, which allows students to collaborate on code and view a shared simulated virtual space. Previously, this virtual robotics platform was used only to facilitate distance education. This paper demonstrates its use in an in-person class during the Spring 2022 semester, illustrating the affordances of a virtual robotics environment for face-to-face learning contexts as well. Students' computational thinking skills were evaluated with assessments both before and after the class, along with surveys and interviews given to determine their opinions and outlooks regarding computer science. The results show that students had a significant improvement in both attitudes and aptitudes.

     
    more » « less
  2. Distributed computing, computer networking, and the Internet of Things (IoT) are all around us, yet only computer science and engineering majors learn the technologies that enable our modern lives. This paper introduces PhoneIoT, a mobile app that makes it possible to teach some of the basic concepts of distributed computation and networked sensing to novices. PhoneIoT turns mobile phones and tablets into IoT devices and makes it possible to create highly engaging projects through NetsBlox, an open-source block-based programming environment focused on teaching distributed computing at the high school level. PhoneIoT lets NetsBlox programs—running in the browser on the student’s computer—access available sensors. Since phones have touchscreens, PhoneIoT also allows building a Graphical User Interface (GUI) remotely from NetsBlox, which can be set to trigger custom code written by the student via NetsBlox’s message system. This approach enables students to create quite advanced distributed projects, such as turning their phone into a game controller or tracking their exercise on top of an interactive Google Maps background with just a few blocks of code. 
    more » « less
  3. The Computer Science Frontiers (CSF) project introduces teachers to the topics of artificial intelligence and distributed computing to engage their female students in computing by connecting lessons to relevant cutting edge technologies. Application topics include social media and news articles, as well as climate change, the arts (movies, music, and museum collections), and public health/medicine. CSF educators are prepared in a pedagogy and peer-teaching centered professional development program where they simultaneously learn and teach distributed computing, artificial intelligence, and internet of things lessons to each other. These professional developments allow educators to hone in on their teaching skills of these new topics and gain confidence in their ability to teach new computer science materials before running several activities with their students in the academic year classroom. In this workshop, teachers participating in the CS Frontiers professional development will give testimonials discussing their experiences teaching these topics in a two week summer camp. Attendees will then try out three computing activities, one from each Computer Science Frontiers module. Finally, there will be a question and answer session. 
    more » « less
  4. null (Ed.)
    The AP Computer Science Principles (CSP) high school course introduces students to computer science and programming. What should motivated students study after successful completion of AP CSP? The AP CSA class teaches Java programming and it has traditionally not attracted students from underrepresented groups. We are working on an alternative, projects-based course that will teach cutting edge CS concepts, such as distributed computing, computer networking, cybersecurity, the internet of things and machine learning, in a hands-on, accessible manner. Such an approach enables students to work on problems that interest them making computing more relevant and the curriculum more engaging. We utilize NetsBlox, a collaborative, block-based programming environment that extends Snap! with a few carefully selected abstractions that open up the vast array of resources freely available on the internet for student programs. Moreover, the tool enables students to work together on the same project remotely similarly to how Google Docs operate. This demonstration will introduce the environment and highlight its utility in creating distributed applications such as a shared whiteboard app and projects that access public domain scientific data sources and visualize them in various ways using online services such as Google Maps or charting. More information is available at https://netsblox.org. 
    more » « less
  5. The paper introduces DeepForge, a gateway to deep learning for scientific computing. DeepForge provides an easy to use, yet powerful visual/textual interface to facilitate the rapid development of deep learning models by novices as well as experts. Utilizing a cloud-based infrastructure, built-in version control, and multiuser collaboration support, DeepForge promotes reproducibility and ease of access and enables remote execution of machine learning pipelines. The tool currently supports TensorFlow/Keras, but its extensible architecture enables easy integration of additional platforms. 
    more » « less
  6. C2STEM is a web-based learning environment founded on a novel paradigm that combines block-structured, visual programming with the concept of domain specific modeling languages (DSMLs) to promote the synergistic learning of discipline-specific and computational thinking (CT) concepts and practices. Our design-based, collaborative learning environment aims to provide students in K-12 classrooms with immersive experiences in CT through computational modeling in realistic scenarios (e.g., building models of scientific phenomena). The goal is to increase student engagement and include inclusive opportunities for developing key computational skills needed for the 21st century workforce. Research implementations that include a semester-long high school physics classroom study have demonstrated the effectiveness of our approach in supporting synergistic learning of STEM and CS/CT concepts and practices, especially when compared to a traditional classroom approach. This technology demonstration will showcase our CS+X (X = physics, marine biology, or earth science) learning environment and associated curricula. Participants can engage in our design process and learn how to develop curricular modules that cover STEM and CS/CT concepts and practices. Our work is supported by an NSF STEM+C grant and involves a multi-institutional team comprising Vanderbilt University, SRI International, Looking Glass Ventures, Stanford University, Salem State University, and ETR. More information, including example computational modeling tasks, can be found at C2STEM.org. 
    more » « less
  7. The paper presents RoboScape, a collaborative, networked robotics environment that makes key ideas in computer science accessible to groups of learners in informal learning spaces and K-12 classrooms. RoboScape is built on top of NetsBlox, an open-source, networked, visual programming environment based on Snap! that is specifically designed to introduce students to distributed computation and computer networking. RoboScape provides a twist on the state of the art of robotics learning platforms. First, a user's program controlling the robot runs in the browser and not on the robot. There is no need to download the program to the robot and hence, development and debugging become much easier. Second, the wireless communication between a student's program and the robot can be overheard by the programs of the other students. This makes cybersecurity an immediate need that students realize and can work to address. We have designed and delivered a cybersecurity summer camp to 24 students in grades between 7 and 12. The paper summarizes the technology behind RoboScape, the hands-on curriculum of the camp and the lessons learned. 
    more » « less